¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹¼öÀÚ¿øÇÐȸ / v.44, no.6, 2011³â, pp.449-459
»ç¼®ÀÇ ¼ö¸®Àû ¾ÈÁ¤¼º ½ÇÇè½Ä °³¹ß
( Experimental Formulae Development of Hydraulic Stability for Riprap )
ÃÖÈï½Ä;¹Ú±¤È£; »óÁö´ëÇб³ °Ç¼³½Ã½ºÅÛ°øÇаú;(ÁÖ)°æÈ£¿£Áö´Ï¾î¸µ;
 
ÃÊ ·Ï
»ç¼® ÀÔÀÚÀÇ ¿îµ¿À» ½ÃÀÛÇÏ´Â ÇѰèÆò±ÕÀ¯¼ÓÀº »ç¼®ÀÇ Æò±ÕÀÔ°æ, ¼ö½É¿¡ ´ëÇÑ »ç¼®ÀÇ Æò±ÕÀÔ°æ ºñ, Froude¼ö ¹× ÇѰèÆò±ÕÀ¯¼Ó¿¡ ´ëÇÑ ³­·ùÀü´Ü¼Óµµ ºñ¿¡ µû¶ó Áõ°¡ÇÔÀ» ½ÇÇèÀ» ÅëÇØ È®ÀÎÇÏ¿´°í, ÀÌ °ªÀ» »ç¼®ÀÇ ¼ö¸®Àû ¾ÈÁ¤¼ºÀ» Áö¹èÇÏ´Â º¯¼ö·Î äÅÃÇÏ¿© ȸ±ÍºÐ¼®À» ÅëÇÑ »ç¼®ÀÇ ¾ÈÁ¤¼º ½ÇÇè½ÄÀ» °³¹ßÇÏ¿´´Ù. °³¹ßµÈ »ç¼® ¾ÈÁ¤¼º ½ÄÀº ±âÁ¸ ½ÇÇèÀÇ À¯¼Ó¹üÀ§ÀÎ 0.36~0.73 m/s¿¡¼­ 0~5.0 m/s±îÁö È®Àå½ÃÄÑ ½ÇÁ¦ ÇÏõ¿¡ Àû¿ë °¡´É¼ºÀ» °ËÅäÇÏ¿´´Ù. Å« °ªÀÇ Reynolds¼öÀÇ È®Àå¿¡ µû¸¥ ÇѰèÆò±ÕÀ¯¼ÓÀ» Æ÷ÇÔÇÑ ¸Å°³º¯¼ö°£ÀÇ À¯¿ëÇÑ »ó°ü¼ºÀ» Á¦½ÃÇÏ¿´´Ù. ½ÇÇè°ªÀ¸·ÎºÎÅÍ È®ÀåµÈ Å« °ªÀÇ ReynoldsÀÇ ¹üÀ§¿¡¼­ÀÇ »ç¼® ¾ÈÁ¤¼º¿¡ ´ëÇÑ Æò±ÕÀÔ°æÀÇ »êÁ¤Àº 0~3.0 m/s¿¡¼­´Â ¹Ì±¹ Åä¸ñÇÐȸ °ø½Ä°ú ¹Ì°³Ã´±¹¿¡¼­ Á¦½ÃÇÑ ¾ÈÁ¤¼º½Ä°ú ÀûÇÕÇÔÀ» º¸¿´À¸¸ç, 3.0~5.0 m/s¿¡¼­´Â ¹Ì±¹ Åä¸ñÇÐȸ °ø½Ä°ú Àß ÀÏÄ¡ÇÏ¿´´Ù. °³¹ßµÈ »ç¼®Æò±ÕÀÔ°æ °áÁ¤°ø½ÄÀº ÀϹÝÀûÀ¸·Î ¹Ì±¹ Åä¸ñÇÐȸ °ø½Ä°ú Àß ÀÏÄ¡ÇÏ¿´°í, ±âÁ¸ ¾ÈÁ¤¼º½Ä°ú ºñ±³ÇÑ °á°ú ´ëºÎºÐ Àß ÀÏÄ¡ÇÏ´Â °ÍÀ¸·Î È®ÀεǾú´Ù. µû¶ó¼­ °³¹ßµÈ »ç¼®Æò±ÕÀÔ°æ »êÁ¤½ÄÀº ³ôÀº »ç¿ë¼ºÀ» °¡Áö°í ÀÖÀ½À» È®ÀÎÇÏ¿´´Ù.
By examining the experimental results, the critical mean velocity which initiates the movement of riprap is increased with the riprap size in mean diameter, the mean diameter over water depth (d/h), Froude number (Fr), and turbulent shear velocity over critical mean velocity (u*/${ u}$) which have great correlations among them so these parameters are adopted governing hydraulic stability for riprap. The hydraulic stability equation for riprap is developed by regression analysis. The developed equation is expanded from 0.36~0.73 m/s of experimental range to 0~5.0 m/s for the application in engineering discipline. So many useful relations among those parameters including critical mean velocity are derived by expanding to high Reynolds regions. Mean diameter calculation results by expanding to high Reynolds regions coincide with the calculations of ASCE and USBR at the range of 0~3.0 m/s and the calculation result of ASCE at the range of 3.0~5.0 m/s. The results by developed formulae coincide well with the formulae of ASCE in general and also the results by recently developed existing formulae of hydraulic stability for riprap. Thus, the developed equation has the high applicability in engineering discipline to evaluate the hydraulic stability for riprap.
 
Ű¿öµå
ÇѰèÆò±ÕÀ¯¼Ó;³­·ùÀü´Ü¼Óµµ;¼ö¸®Àû ¾ÈÁ¤¼º;Æò±ÕÀÔ°æ;½ÇÇè½Ä;critical mean velocity;turbulent shear velocity;hydraulic stability;mean diameter;experimental formulae;
 
Çѱ¹¼öÀÚ¿øÇÐȸ³í¹®Áý / v.44, no.6, 2011³â, pp.449-459
Çѱ¹¼öÀÚ¿øÇÐȸ
ISSN : 1226-6280
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO201123163434130)
¾ð¾î : Çѱ¹¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿