|
|
Çѱ¹½Ä¹°ÇÐȸ / v.51, no.2, 2008³â, pp.145-149
|
( Effect of Chitin Hexamer and Thuricin 17 on Lignification-related and Antioxidative Enzymes in Soybean Plants ) |
;;;; ;;;;
|
|
|
 |
|
|
ÃÊ ·Ï |
|
|
Inducers of disease resistance in crop plants have a role in sustainable agriculture. We describe a set of bacteriocins that can potentially improve plant growth by controlling specific pathogens and inducing generalized resistance. Solutions of the bacteriocin thuricin 17 and/or a chitin hexamer (a known inducer and positive control) were applied to leaves of two-week-old soybean plants, and levels of lignification-related and antioxidative enzymes were monitored. Phenyl ammonia lyase (PAL) activity in thuricin 17-treated leaves was highest at 60 h after treatment, being 61.8% greater than the control. PAL activity also was increased 18.1% at 72 h after treatment with the chitin hexamer. Tyrosine ammonia lyase (TAL) activity in leaves was 57.0% higher than the control at 48 h after treatment with thuricin 17, while such activity in chitin hexamer-treated leaves was increased by 23.8% at 72 h. At 36 h after treatment with the chitin hexamer or chitin hexamer + thuricin 17, the total concentration of phenolic compounds was 15.3 or 19.3%, respectively, greater than the control. At 72 h, total phenolic concentrations increased by 23.2 and 19%, respectively, in response to thuricin 17 and chitin hexamer+thuricin 17. POD activity in thuricin 17-treated leaves increased by 74.6 and 81.2% at 48 and 72 h, respectively, whereas SOD activity increased by 24.9 and 79.9%, respectively, in chitin hexamer- and thuricin 17-treated leaves at 48 h. A peroxidase isozyme (31 kDa isomer) was induced in thuricin 17-treated leaves at 60 h, while catalase (59 kDa isomer) was induced in chitin hexamer-treated leaves. PAGE showed that two major SOD bands (Fe-SODs) were produced by both types of treatment. Collectively, these results indicate that the bacteriocin thuricin 17 can act as an inducer of plant disease defenses (i.e., activated lignification-related enzymes, antioxidative enzymes, and related isozymes) and that this induction is similar, but not identical, to that of the chitin hexamer elicitor. Although treatment with thuricin 17 + chitin hexamer also induced those responses, it did not present a clear pattern of additivity or synergy. |
|
Ű¿öµå |
chitin hexamer;peroxidase (POD);phenylalanine ammonia lyase (PAL);soybean;superoxide dismutase (SOD);thuricin 17;tyrosine ammonia lyase (TAL); |
|
|
|
 |
|
Journal of Plant Biology / v.51, no.2, 2008³â, pp.145-149
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200814357780315)
¾ð¾î : ¿µ¾î |
|
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø |
|
|
|
|
|