¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.51, no.2, 2008³â, pp.139-144

( The Relationship between Lignin and Morphological Characteristics of the Tracheary Elements from Cacao (Theobroma cacao L.) Hulls )
;;;;;; ;;;;;;
 
ÃÊ ·Ï
Tracheary elements (TEs) were physically separated from the hulls of cacao pods (Theobroma cacao L.). Their morphological features were extensively investigated with scanning electron microscopy and chemical characterization. Spiral TEs were covered with a thin layer of primary wall that had a web-like structure on its outer surface. These TEs had a spiral circularity diameter of $8.2;{pm};0.6;{mu}m$ and an estimated secondary wall thickness of about $2.1;{pm};0.2;{mu}m$. Polarized microscopy analysis revealed that the cellulose microfibrils were aligned parallel to that thickening. Lignin content was 36.1%, with a 0.13:1.00 molar ratio of syringyl to guaiacyl units and a 1.09:1.00 molar ratio of erythronic acid and threonic acid. Total yields of the alkaline nitrobenzene oxidation and ozonation products were 324.5 and $148.8;{mu}mol;g^{-1}$ of extract-free TEs, respectively. Based on these morphological and lignin characteristics, we conclude that fully ripened cacao hulls exhibit the same features of secondary wall thickening as those seen at an earlier stage.
 
Ű¿öµå
lignin;nitrobenzene oxidation;ozonation;tracheary element;Theobroma cacao L.;
 
Journal of Plant Biology / v.51, no.2, 2008³â, pp.139-144
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200814357780307)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿