¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.49, no.4, 2006³â, pp.309-314

( Molecular Genetic Analysis of Tandemly Located Glycosyltransferase Genes, UGT73B1, UGT73B2, and UGT73B3, in Arabidopsis thaliana )
;;; ;;;
 
ÃÊ ·Ï
In the Arabidopsis genome, approximately 120 UDP-glycosyltransferases (UGTs) have been annotated. They generally cataklyze the transfer of sugars to various acceptor molecules, including flavonoids. To better understand their physiological roles, we analyzed a tandemly located putative flavonoid UGT cluster comprising UGT73B1, UGT73B2, and UGT73B3 on Chromosome IV. We then isolated four loss-of-function mutations-ugt73b1-1, ugt73b2-1, ugt73b3-1, and ugt73b3-2. In our expression analysis, the closely related UGTs exhibited tissue-specific patterns of expression that were severely altered in their respective mutant plants. For example, UGT73B2 was up-regulated in ugt73b1-1, whereas UGT73B1 was highly expressed in ugt73b2-1, ugt73b3-1, and ugt73b3-2. Interestingly, each recessive mutant was resistant to methyl viologen (paraquat), an herbicide thought to cause oxidative stress. Our results suggest that UGTs play an important role in the glycosylation pathways when responding to oxidative stress.
 
Ű¿öµå
Arabidopsis;flavonoids;glycosylation;methyl viologen;oxidative stress;UDP-glycosyltransferases;
 
Journal of Plant Biology / v.49, no.4, 2006³â, pp.309-314
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200634741565437)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿