¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.49, no.4, 2006³â, pp.291-297

( Ethylene-Regulated Expression of ACC Oxidase and ACC Synthase Genes in Mung Bean Hypocotyls )
; ;
 
ÃÊ ·Ï
Ethylene induces an increase in transcript levels of the ACC oxidase gene (VR-ACS1) but suppresses expression of the ACC synthase gene (VR-ACS1) in etiolated mung bean hypocotyls. Here, treatment with either the transcription inhibitor ${alpha}-amanitin$ or the protein synthesis inhibitor cycloheximide (CHI) completely abolished ethylene-induced accumulation of VR-ACO1 mRNA. This indicated that ethylene-induction of VR-ACO1 is due to transcriptional activation, which also relies on de novo protein synthesis. In contrast, CHI induced the accumulation of VR-ACS1 transcripts.. ABA also inhibited ethylene-induced VR-ACO1 expression, but restored ethylene-suppressed VR-ACS1 expression. Results of time-course experiments and an interaction analysis of CHI and ABA suggested that the latter may exert its effect by preventing the synthesis of a factor(s) necessary for ethylene action. Ethylene-signaling was studied in more detail, using two pharmacological. inhibitors--EGTA and sodium orthovanadate. Those experiments demonstrated that calcium ions and a Tyr type of protein phosphatase may be involved in regulating ethylene biosynthetic genes.
 
Ű¿öµå
ABA;ACC oxidase;ACC synthase;calcium;ethylene;mung bean;
 
Journal of Plant Biology / v.49, no.4, 2006³â, pp.291-297
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200634741565303)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿