¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.50, no.6, 2007³â, pp.681-686

( Rapid Shoot Propagation from Micro-Cross Sections of Kiwifruit (Actinidia deliciosa cv. 'Hayward') )
;;;; ;;;;
 
ÃÊ ·Ï
Kiwifruit shoots can be rapidly propagated through a micro-cross section (MCS) system we established here. Optimal culture conditions were determined for different explant types, section sizes, and concentrations of inorganic salts and plant growth regulators. Rates of survival and callus formation were higher in half-strength MS salts than in full-strength MS media. Similar performance (i.e., survival and callus formation) was achieved with section sizes of either $800{mu}m$ or $1200{mu}m$. Proliferation efficiency was greatest when explants from stem tissue were cultured on 1/2 MS supplemented with $4.5{ imes}10^{-3}{mu}M$ 2,4-dichlo-rophenoxyacetic acid and $4.6{ imes}10^{-1}{mu}M$ zeatin. The number of shoots averaged 2.61 per explant, representing an efficiency of 94%. RAPD analysis revealed that the regenerated plants from our MCS system were genetically stable. These results show that the culturing of micro-cross sections from stem tissue is a powerful method for kiwifruit propagation.
 
Ű¿öµå
kiwifruit;normal shoots;section sizes;tissue types;vibratory microtome;
 
Journal of Plant Biology / v.50, no.6, 2007³â, pp.681-686
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200706414177571)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿