¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.51, no.1, 2008³â, pp.52-57

( Thermal Dissipation of Excess Light in Arabidopsis Leaves is Inhibited after Gamma-irradiation )
;;;;; ;;;;;
 
ÃÊ ·Ï
To elucidate the effect of ionizing radiation on the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we analyzed the buildup and release of NPQ in Arabidopsis wild-type (WT) and npql-2 mutant plants after gamma-irradiation. The npq1-2 mutant cannot normally induce the buildup of NPQ by a mutation in the violaxanthin de-epoxidase gene. A dose of $50;Gy;h^{-1}$ for 4 h significantly suppressed such buildup in the mutant and, more noticeably, in the WT. Both the initial rise and maximum level of NPQ were gradually inhibited after gamma-irradiation. In contrast, the release of NPQ and the maximum photochemical efficiency (Fv/Fm) of Photosystem II were largely unaffected in either genotype. This inhibition of NPQ buildup could be partly attributable to a significant decrease in the content of carotenoids, including xanthophyll pigments. Moreover, inhibition that was dependent on the xanthophyll cycle substantially enhanced the sensitivity of irradiated leaves to a photoinhibitory illumination of $800;{mu}mol$ photons $m^{-2};S^{-1}$. The difference in Fv/Fm values between the WT and npq1-2 under that photoinhibitory level of illumination was much smaller in the irradiated leaves than in the control. However, NPQ inhibition did not cause a significant difference in efficiency between WT and mutant when both were treated with UV-B irradiance of $2.4;W;m^{-2}$. Therefore, we suggest that a significant decrease in carotenoid content after gamma-irradiation should partially contribute to the enhanced sensitivity of irradiated plants, at least to high-light photoinhibition. This is accomplished by suppressing the thermal dissipation of excess light absorbed by photosynthetic pigments.
 
Ű¿öµå
gamma ray;high light;non-photochemical quenching (NPQ);ultraviolet (UV) ray;xanthophyll cycle;
 
Journal of Plant Biology / v.51, no.1, 2008³â, pp.52-57
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO200810737042414)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿