¶óÆæÆ®¦¢Ä«Æä¦¢ºí·Î±×¦¢´õº¸±â
¾ÆÄ«µ¥¹Ì Ȩ ¸í»çƯ°­ ´ëÇבּ¸½Ç޹æ Á¶°æ½Ç¹« µ¿¿µ»ó°­ÀÇ Çѱ¹ÀÇ ÀüÅëÁ¤¿ø ÇÐȸº° ³í¹®
ÇÐȸº° ³í¹®

Çѱ¹°Ç¼³°ü¸®ÇÐȸ
Çѱ¹°ÇÃà½Ã°øÇÐȸ
Çѱ¹µµ·ÎÇÐȸ
Çѱ¹»ý¹°È¯°æÁ¶ÀýÇÐȸ
Çѱ¹»ýÅÂÇÐȸ
Çѱ¹¼öÀÚ¿øÇÐȸ
Çѱ¹½Ä¹°ÇÐȸ
Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ
Çѱ¹ÀÚ¿ø½Ä¹°ÇÐȸ
Çѱ¹ÀܵðÇÐȸ
Çѱ¹Á¶°æÇÐȸ
Çѱ¹Áö¹Ý°øÇÐȸ
Çѱ¹ÇÏõȣ¼öÇÐȸ
Çѱ¹È¯°æ»ý¹°ÇÐȸ
Çѱ¹È¯°æ»ýÅÂÇÐȸ

Çѱ¹½Ä¹°ÇÐȸ / v.37, no.3, 1994³â, pp.285-292

( Changes in Chloroplast Ultrastructure and Thylakoid Membrane Proteins by High Light in Ginseng Leaves )
; ;
 
ÃÊ ·Ï
Ultrastructural changes in Panax ginseng C. A. Meyer mesophyll chloroplasts and variation of thylakoid membrane protein in responce to the light intensity were studied in leaves of two-y-old plants exposed to two different light intensities under field coditions. The leaves were allowed to function for three months after emergence under two contrasting light conditions. The ginseng chloroplasts of 5% light were filled with highly stacked grana of condensely arrayed thylakoids, so that the stroma space was hardly observed. In contrast, chloroplasts from leaves at 100% sunlight had fewer thylakoid membranes and smaller grana stacks. The number of osmiophilic globules increased. Total Chl content and Chl b content were lower at 100% sunlight than 5% sunlight. The thylakoid membrane proteins in the leaves grown at 100% sunlight showed lower CPIa, LHCII and CP29 than those with 5% sunlight. This effect was most obvious for LHCII. Polypeptides showed major bands at 90, 64, 29-30, 22 and 14 kD, and minor bands at 59, 58, 54, 52, 49, 46, 44, 35, 23, 21 and 18-19 kD. All these bands were lower in intensity in the leaves exposed to 100% sunlight. Moreover, the bands at 58-59, 46-47 and 23 kD disappeared.
 
Ű¿öµå
 
Journal of Plant Biology / v.37, no.3, 1994³â, pp.285-292
Çѱ¹½Ä¹°ÇÐȸ
ISSN : 1226-9239
UCI : G100:I100-KOI(KISTI1.1003/JNL.JAKO199411920116968)
¾ð¾î : ¿µ¾î
³í¹® Á¦°ø : KISTI Çѱ¹°úÇбâ¼úÁ¤º¸¿¬±¸¿ø
¸ñ·Ïº¸±â
ȸ»ç¼Ò°³ ±¤°í¾È³» ÀÌ¿ë¾à°ü °³ÀÎÁ¤º¸Ãë±Þ¹æÄ§ Ã¥ÀÓÀÇ ÇѰè¿Í ¹ýÀû°íÁö À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý °ÅºÎ °í°´¼¾ÅÍ
   

ÇÏÀ§¹è³ÊÀ̵¿